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Abstract 

In this final report, we describe the project outcome, NEOS, a C++ software framework which 
implements the majority of state-of-art netlist obfuscation/deobfuscation algorithms. The API of NEOS 
allows for easy extension and modification of (de)obfuscation algorithms. 

I. INTRODUCTION

Due to the high costs of maintaining facilities for deeply scaled integrated-circuit manufacturing, semiconductor 
companies outsource fabrication to consolidated fabs. This has raised serious concerns regarding malicious 
modification of designs and reverse-engineering leading to IP theft. Logic locking thwarts these threats by adding 
programmability to the design, so that the IC will not be operational unless configured correctly post-fabrication by 
a secret key. Split-manufacturing is based on simply fabricating upper layers with larger feature sizes in a trusted 
facility. IC camouflaging is based on inserting nano-device structures in the fabricated IC that are difficult to reverse 
engineer by end-users. 

While implementing these schemes requires different technologies and design/manufacturing flows, from an 
attacker’s perspective, all these schemes (more true for locking/camouflaging) can be modeled with somewhat 
similar mathematics: as transforming a circuit 𝑐𝑐𝑜𝑜(𝑥𝑥) to 𝑐𝑐𝑒𝑒(𝑥𝑥,𝑘𝑘) by adding 𝑙𝑙 additional inputs/variables 𝑘𝑘 called 
key-inputs which model the netlist’s ambiguity to the attacker. Given this, the goal of the attacker is to recover 
𝑐𝑐𝑜𝑜  given 𝑐𝑐𝑒𝑒. An oracle-guided attacker is one that in addition to 𝑐𝑐𝑒𝑒  has black-box access to 𝑐𝑐𝑜𝑜. In practice this 
means that the attacker has an operational IC that he/she can use to test chosen input patterns and observe outputs. 
Security of an obfuscation scheme heavily depends on the observability that the attacker has on the circuit. For 
example, without full scan-chain access, an oracle-guided attacker will have to reason about sequential behavior 
which is a much more complex computational task. 

The development of better and better obfuscation schemes has been followed by the invention of more and more 
powerful attacks. Access to high-performance obfuscation and deobfuscation software is critical to research in 
these areas as it removes the need to build existing algorithms from scratch. With this in mind, this report 
presents a 25K-lines-of-code C++ object-oriented framework that implements a myriad of existing (de)obfuscation 
algorithms, along with an easy-to-use and extendable API that is discussed herein. 

II. NETLIST   REPRESENTATION

The first step of developing any netlist-based software tool is representing the netlist itself. NEOS supports two 
main objects/classes circuit and aig for storing netlists. Both use a custom C++ container to keep nodes that
are accessed by unique IDs. The custom data-structure allows for dynamic removal of nodes while supporting 
array-like fast indexing. circuit supports hierarchical designs with primitive gates (and/nand/xor/xnor/...) and
instances from a standard-cell library. Netlists in circuit are represented by an array of gate and wire objects
that link to each other with fanout and fanin sets. circuit supports reading-in designs from a gate-level verilog
(supporting ranged/indexed net definitions) and bench files. The read-in is based on parsers written in Flex/Bison. 
Key inputs are specified by starting the wire-name with keyinput.
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circuit objects can be converted to aig objects which store structurally-hashed [1] And-Inverter-Graphs
(AIG). AIGs, which are used in almost all modern verification/circuit-reasoning engines, are a great way to represent 
the circuit in a library-free manner with uniform nodes. AIGs allow for various simplification algorithms due to 
their semi-canonical nature. NEOS implements several of these including one-level hashing, k-cut-sweeping and 
DAG-aware rewriting [1]. 

NEOS supports various graph algorithms for AIGs and circuits. DAG algorithms including local/global- 
topological-sorting, feedback-arc-set, transitive-fanin/fanout are necessary to many (de)obfuscation algorithms which 
both objects support. These objects support editing operations such as removing and adding individual nodes as well 
as adding/inserting other objects of the same type (compounding). Another important category of DAG algorithms 
is partitioning. NEOS supports k-cut enumeration/detection which finds (fanout-free) logic cones in the circuit for 
both circuit and aig objects. This is crucial in an array of obfuscation schemes such as LUT-insertion since in
LUT-insertion any k-cut can be replaced with a k-input LUT. In addition, NEOS supports equal-partitioning which 
will try to partition the circuit into similarly-sized sub-graphs. This is a great tool for performing density-minimizing 
obfuscation. 

The netlist classes also include other important member functions such as combinational/sequential pattern 
simulation and error-checking. 

III. OBFUSCATION   ALGORITHMS

Given the above netlist representation and graph algorithms, it is possible to build the majority of obfuscation 
schemes. Obfuscation algorithms are significantly less complicated than deobfuscation algorithms. It is possible to 
divide obfuscation algorithms to those studied before the invention of the oracle-guided SAT attack (traditional) 
and those that followed the SAT attack and try to specifically mitigate it (SAT-resilient). 

The majority of traditional schemes are based on throwing various key-controlled/ambiguous elements into the 
circuit. Many various flavors of these schemes can be built using the netlist representation and the supported DAG 
algorithms, plus pattern simulation. NEOS implements an array of such traditional schemes including, random- 
X(N)OR/MUX/LUT insertion [2], insertion driven by error-rate cost-functions with hill-climbing, insertion in 
locations with maximum hamming-distance [3], and insertion of parity units (parity functions are hard to learn with 
shallow learners per computational learning theory). The hill-climbing obfuscation algorithm is a very important 
module as it can be used to optimize any given metric. This scheme is hence given its own object with a cost-function 
that can be replaced any C++ function which allows for easy extension. 

A major part of the obfuscation-suite is dedicated to interconnect locking by inserting multiplexer (MUX) and 
tri-state-buffers. The interconnect locking suite supports cross-bar/MUX-network insertion [4] with different site- 
selection strategies (random, cost-function driven, k-cut, ...). The interconnect locking suite also includes a hill- 
climbing strategy which can be designed to maximize metrics such as feedback-arc-set size, graph density, minimum 
density for equal coverage of the netlist and so on [5]. 

Almost all SAT-resilient schemes rely on point-functions which are able to hide a small number of points in the 
circuit’s truth-table from the attacker. These schemes try to achieve the Exact-Functional-Secrecy (EFS) notion of 
security per [6]. EFS security is defined loosely as: “the attacker should not be able to learn the precise functionality 
of the circuit in time t ”. This notion is stronger than key-recovery: “the attacker should not be able to recover 
the correct key in time less than t”. It also allows for the attacker to approximate the circuit with exponentially 
good accuracy and is hence not suited for designs where approximation by attackers is a concern. As for EFS 
obfuscation, NEOS supports numerous schemes. Anti-SAT [7] with functional/structural obfuscation, DTL [8] with 
various insertion strategies, and corrupt-and-correct schemes [9]. 

While the above mentioned schemes are part of the body of research on obfuscation, we now know that the most 
secure form of EFS schemes is ones in which an existing (multi)-point-function in the circuit is detected and replaced 
with a look-up-table which NEOS supports [10]. These approaches are more secure since the reductive nature means 
that the attacker cannot simply remove added structures. One particular scheme that NEOS implements is based 
on using SAT-calls to identify all the input patterns that activate a particular net and if the number is smaller than 
a given size, then it is replaced with a look-up-table. In addition, NEOS supports the “larger-than-z” look-up-table 
from [6] which tricks the attacker into thinking that there are additional hidden patterns that need to be found by 
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querying the entire input space. 

IV. DEOBFUSCATION   ALGORITHMS

NEOS implements deobfuscation algorithms in an object-oriented and polymorphic way. The simplest (top in the 
class hierarchy) deobfuscation object is an oracle-less class which includes only the obfuscated circuit 𝑐𝑐𝑒𝑒. The 
object upon execution of the attack will return a correct key or a key hypothesis with probability values attached to 
the guessed key-bits. An oracle-guided attack object which derives from this topmost class has an additional oracle 
object 𝑐𝑐𝑜𝑜. This class will take care of linking the input-outputs of 𝑐𝑐𝑜𝑜  and 𝑐𝑐𝑒𝑒  and error-checking. 𝑐𝑐𝑒𝑒 and 𝑐𝑐𝑜𝑜  can be 
sequential for which a different class is used. 

The interface of the attacks (obfuscated/oracle circuit as the input and and key-hypothesis as the output) allows 
for chaining together various attacks. This is particularly useful in attacks that can guarantee the correctness of some 
key bits which allow for simplifying the circuit and continuing with another or the same attack. The key-hypotheses 
can also be chained by weighted adding of probability values attached to keys. 
A. Combinational Deobfuscation
In combinational deobfuscation the circuit 𝑐𝑐𝑜𝑜 and 𝑐𝑐𝑒𝑒  are both stateless. Oracle-guided attacks in literature have 
mostly focused on this case with the SAT-attack being the most prominent. The SAT attack has the unique ability 
to guarantee the recovery of a correct key if the original hypothesis model is expressive enough to include the 
original circuit (there exists 𝑘𝑘∗ for which 𝑐𝑐𝑒𝑒(𝑥𝑥,𝑘𝑘∗) agrees with 𝑐𝑐𝑜𝑜(𝑥𝑥) on all input patterns). 

SAT attacks use SAT queries to guide the deobfuscation process. Similar to SAT-based verification or equivalence 
checking, in SAT attacks circuits are built to represent a specific condition and then converted to Conjunctive- 
Normal-Form (CNF) formulae. In the baseline SAT attack a mitter condition is formed by building the circuit 
𝑀𝑀 ≡ (𝑐𝑐𝑒𝑒(𝑥𝑥,𝑘𝑘1) ≠ 𝑐𝑐𝑒𝑒(𝑥𝑥,𝑘𝑘2). If this circuit is converted to CNF and satisfied with a SAT solver, the 𝑥𝑥� that is 
returned by the solver is called a discriminating input pattern (DIP). This input pattern if queried on the oracle, is 
guaranteed to trim the hypothesis key-space by at least one wrong key. Then the correct input-output observation 
condition is built as (𝑐𝑐𝑒𝑒(𝑥𝑥�,𝑘𝑘1) = 𝑐𝑐𝑜𝑜(𝑥𝑥�)) which will be a new circuit and its output must be ANDed with 𝑀𝑀 and 
the process is repeated. 

NEOS implements various transforms for building and compounding such circuits/conditions. NEOS implements 
an API for converting circuits to SAT formulae. This conversion happens to have a relatively significant impact 
on the performance of SAT solving. Currently NEOS supports the baseline Tseitin transform in addition to the 
technology-mapping algorithm from [11]. Both techniques will add a set of clauses to a solver and producing a 
mapping between wires in the circuit and variables in the solver. An important feature which is very important for 
incrementally building and solving SAT problems is that the CNF conversion can take as input a set of pre-existing 
variables/wires, in which case the conversion will not create new variables for these nets. This for instance can be 
used to stitch a new copy of the circuit to an earlier CNF, connecting the input variables rather than duplicating 
them. 

Currently NEOS interfaces to three SAT solvers Glucouse, MiniSAT, and CryptoMiniSAT with Glucouse being 
the default and preferred choice due to solver simplification and the support for copying solvers. Copying solvers 
is critical to many advanced deobfuscation routines which will fail until we add copy support to other solvers. The 
solvers are wrapped with a parent class which has a unified interface. This allows developers to add other solvers 
by simply replicating and implementing the solver API. 

NEOS implements almost all existing SAT based deobfuscation attacks. In addition to the baseline SAT attack 
[12] NEOS implements AppSAT [8] which is a SAT based attack that is aware of the error rate of the hypothesis
key and can hence be terminated earlier in cases where approximation is sufficient. It also implements (t)-DDIP
and AppSAT termination conditions [8] which allow for early termination in certain cases. For instance, these
termination conditions can signal termination when the error rate of an l-bit key is less than a small t.

The SAT based attacks are also implemented in an object-oriented manner with many optimization techniques 
that can be applied to any of the attacks. For instance various subkey extraction schemes are supported. First is 
the simple backbone-analysis [12] which given a condition on the key 𝜙𝜙(𝑘𝑘), will perform a SAT solver query on 
each key bit and determine if given 𝜙𝜙(𝑘𝑘) a particular key bit is resolved. A stronger subkey extraction routine is 
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the wire-disagreement analysis which can find multiple settled key-bits if they fall in the fanin cone of the same 
internal net in the circuit [8]. 

The synergy between circuits and Boolean conditions and CNF formulae means that simplifying circuits will 
result in simpler formulae and faster SAT solving. An opt module is included in NEOS which supports various 
simplification routines for both circuit and aig classes. aig simplification routines are faster due to the 
AIG-specific sweeping algorithms. NEOS currently supports SAT-sweeping which uses SAT solver calls to find 
equivalent nodes in the circuit and merges them. The aig class supports the fast Fraig SAT-sweeping algorithm [13] 
which is orders of magnitude faster than the circuit class’s SAT-sweep which uses the baseline counter-example 
driven algorithm. Both netlist representations support BDD-sweeping which derives the BDD of internal nets up 
to a given BDD size bound and finds equivalent nodes. Note that only SAT-based simplification can use external 
conditions which are needed when simplifying circuits further given current input-output pairs observed in the 
attack. Simplifying key-conditions called key-condition-crunching (KC2) [14] can be applied to various attacks as 
well. Note that all sweeping techniques (equivalent node detection) are derived from the class Sweep. A separate 
analysis and commit stage allows for finding nodes but not merging them which is useful in many instances. 

Cyclic SAT attacks are implemented in NEOS as well. These are attacks that can deobfuscate circuits that include 
intentional combinational cycles [15]. The IcySAT attacks [16] are the most recent and strongest algorithms for 
cyclic deobfuscation which are implemented in NEOS. Furthermore, the analysis step in the Sweep class can be 
used to find equivalent nodes and then merging them in reverse-topological order can create cyclic-yet-combinational 
circuits which are much harder to deobfuscate. 

NEOS implements statistical attacks as well in the stat module. Most importantly the hill-climbing attack [17] 
which uses a simulated-annealing algorithm to optimize a key. The listing below shows a code snippet for reading 
in, obfuscating and deobfuscating the c432 benchmark. 

 
 

circuit co; co.read_bench("./bench/c432.bench"); 
circuit ce = co; 
enc::enc_xor_rand(ce, random_boolvec(32)); 
dec::sat_dec_exact(co, ce, iteration_limit); 

 
 

 

B. Sequential Deobfuscation 
In sequential deobfuscation 𝑐𝑐𝑒𝑒 and 𝑐𝑐𝑜𝑜  are sequential circuits. Sequential deobfuscation is a rather overlooked area 
with little tool support due to the increased complexity of the algorithms. In SAT-based sequential deobfuscation, 
the SAT query that searches for DIPs is replaced with a model-checking query that searches for a sequence of DIPs 
called DISs. NEOS supports sequential attacks using an external model-checker i.e. nuXmv. nuXmv implements 
state-of-the-art model-checking routines that can be tweaked to improve the attack. 

Having an instance of a model-checker inside the framework so that it can be queried repeatedly without 
destroying the SAT-solvers can speed up sequential attacks by 100X [14]. NEOS hence implements several state-of- 
the-art model-checking routines through the polymorphic objects without the need for an external checker. The Bmc 
class implements bounded-model-checking (BMC) by unrolling and optional simplification at the circuit/AIG/SAT- 
solver level. Per Fig. 1, key-condition-crunching [14] techniques are integrated with sequential deobfsucation by 
keeping simplified versions of the unrolled circuit and further simplifying them as the condition on the key gets 
more constrained throughout the attack. Condition simplification is significantly more important in the problem 
of sequential deobfuscation, as sequential deobfuscation SAT formulae sizes grow at much higher rates. This is 
because as the discriminating input sequences get deeper, larger and larger circuit conditions need to be added to 
the solver. However, the added conditions have lots of redundancy due to the unrolling. 

NEOS implements a sequential version of the hill-climbing attack which is surprisingly successful in 
approximating the functionality of large sequential circuits with user-provided parameters such as number of 
random patterns to query and maximum depth of exploration. 

4 
Approved for public release; distribution is unlimited.



b aseline

k c2 

×105

8 

6 

4 

2 

0 

0 10 20 30 40 

depth 
Fig. 1: Sequential SAT attack on the s400 benchmark with 36 key-bits with and without key-condition-crunching (KC2). KC2 enables 
reaching further into the state-space with low clause count. 

V. MISCELLANEOUS

NEOS implements a simple flow for oracle-less analysis. This involves a module for keeping track of how key- 
logic transforms with resynthesis. NEOS has an interface to ABC which is used for various tasks including model- 
checking, equivalence checking and simplification. ABC’s routines for circuit simplification are a result of a decade 
of development at Berkeley and are the fastest when it comes to circuit compression. 

NEOS interfaces to the Cudd BDD package which is used to translate circuits/AIGs into BDDs. This can be
used to implement BDD based (de)obfuscation as well. The BDD package is also used to perform cube operations 
used in several aspects of obfuscation. 

NEOS has a SAT-based implementation of REFSM [18] that uses an All-SAT routine to mine for states given 
a set of state-registers which can be used to deobfuscate FSM-based obfsucation. NEOS supports drawing circuits 
to a .dot graph format for visualization per Fig. 2.

(a) original circuit (b) obfuscated circuit

Fig. 2: NEOS obfuscating the s27 circuit. Green inputs are added keys and black-boxes are latches. 
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VI. CONCLUSION

In this report we described NEOS a C++ framework for netlist-level circuit obfuscation/deobfuscation. Deobfuscation 
attacks are complicated algorithms for which fast available implementations are rare. NEOS promises to fill 
this gap by providing an array of existing attacks and defenses for better understanding the problem of netlist 
locking/unlocking. 
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